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In this article, we define stochastic dynamics for a system coupled to reservoirs.
The rules for forward and backward transitions are related by a generalized
detailed balance identity involving the system and its reservoirs. We compare
the variation of information and of entropy. We define the Carnot dissipation
and prove that it can be expressed in terms of cyclic transformations. Lower
bounds for partial dissipations are also studied, as well as the effect of switching
off certain reservoirs. We also study the near degeneracy of the stochastic
matrix, relate it to phase transitions and we show that the reduced dynamics on
the set of phases is a permutation. Finally, we relate these concepts to heat,
work and more generally to the dissipation and creation of resources, in general
systems.
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1. INTRODUCTION

In a mechanical, physico-chemical or biological system, things happen only
when the system is out of equilibrium. By comparison, in equilibrium, all
possible transitions in the system are balanced, so that no net fluxes are
produced and as a consequence the system appears to be inert. The only
way to reach a stationary non-equilibrium state is for the system to be
coupled to reservoirs that impose conditions incompatible with the equi-
librium. These assertions, although in a way tautological, are not easy to
formulate mathematically so that they include a broad category of systems.



It seems to us clear that many systems, whether they be physicochemical,
biological, ecological, and economic, must satisfy these tautological asser-
tions. There have been many, many attempts to describe particular systems
out of equilibrium. Indeed this was one of the original aims of thermo-
dynamics, namely to relate heat and work (see, among many references,
refs. 1–8). More general formalisms have also been developed and
thermodynamic state functions have been defined valid for relatively
general systems (see, e.g., refs. 2, 4, 6, 10), or for more specific systems.
Examples include reaction-diffusion systems (see, e.g., refs. 3, 4, 8–10),
usually with large volume asymptotics, (11, 12) biochemical systems (see, e.g.,
refs. 7–9, 14) or small systems like molecular motors (see ref. 7 and refer-
ences therein for the original models and ref. 14 for a more recent review)
as well as examples of entropy production. (15)

Our aim is to build a framework valid for general out of equilibrium
systems. This framework will be, as a consequence, of a rather abstract
nature; for example, it should apply to large systems (like standard non-
equilibrium thermodynamical systems) as well as to small systems (like
biochemical systems), and thus this framework should not depend on large
volume asymptotics, or a many-particle limit or an energy concept. Several
years ago, we developed a master equation-based framework, using a
stochastic matrix formalism. The theory of dissipation of information in a
Markovian discrete system has been introduced in the mathematical theory
of communication (see ref. 17, for the initial reference), leading to the
concept of relative information (refs. 18 and 19) between two probability
distributions on the state space X

S(p | q)= C
x ¥ X

p(x) log
p(x)
q(x)

.

From this definition, one deduces that, S is non-negative, and S is zero
if and only if p=q. Moreover, S(p | q) decreases under any Markovian
evolution. This idea has been also applied in refs. 20 and 21 to physico-
chemical systems, where the link with the standard free energy is explicit.
In ref. 16 we applied these ideas to generalize the fluctuation-dissipation
theorem and the Onsager relations, in both cases far from equilibrium, as
well as to a path space entropy notion. This has led us to the general defi-
nition of first order phase transition for stochastic systems, (22) to notions of
hierarchical relaxation (23) and to the definition of coarse graining using
distances, constructed on the state space from the left eigenstates and the
corresponding relaxation times of the Markovian stochastic dynamics. (24)

The possibility of using Markovian stochastic dynamics on a discrete state
space is a basic hypothesis of most approaches to statistical mechanics and
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to thermodynamics. It is a mathematical translation of the physical fact
that there is a separation of time scales, so that a coarse grained description
of the system can be used. The assumption is that the dynamics inside each
‘‘grain’’ is so fast that each ‘‘grain’’ is in a stationary state. It is also the
underlying hypothesis of all macroscopic descriptions of flows, in particu-
lar in hydrodynamics.

Our basic assumption is that a Markovian stochastic dynamics on a
certain coarse-grained state space is a correct description of the system, due
to much faster relaxation times inside a grain, than between different grains.

This hypothesis may be wrong in certain instances. See ref. 25 for a
discussion in the context of chemical kinetics of the limit of a Markovian
theory of chemical rate constants, ref. 26 for the effect of correlations
in generalized thermodynamics and hydrodynamics, ref. 27 for memory
effects and long tail laws in molecular hydrodynamics, ref. 28 for memory
effects in solids, and many other references.

Thus in our approach, the first central notion, which seems valid for
any kind of natural system, is the notion of coarse-graining: it describes the
basic relation between the observer and the system, and thus has partly a
subjective character, and anyway, it depends on the processes of observa-
tion or on the apparatus and the technique available to the observer.

In physics, it leads to the related notions of entropy, reduced descrip-
tion, adiabatic elimination of variables, macrostates, etc. In chemistry, it
leads to the notion of chemical species. In economics, it is related to the
notion of aggregation and the concept of value. For example, the definition
of the chemical species ‘‘water’’ depends on the technique which is avail-
able: usually it would refer to a certain molecule and one would coarse
grain various rotational or vibrational states. But, with more elaborate
technique, one may have to distinguish different species of water according
to their internal states.

A second basic notion is the notion of fluxes, loops, cycles in chemis-
try, biochemistry, ecology as well as economics. Fluxes and cycles are
created and maintained by competing external reservoirs. It is the treatment
of reservoirs and external transitions that is central to most of the present
article. Indeed, an external observer of a system will observe a global
dynamics, the dynamics of the currents or fluxes of energy, matter, or
various quantities between the system and its reservoirs. In equilibrium
these currents are zero, and the non-equilibrium stationary state is induced
only because certain reservoirs maintain external fluxes. The prototype is
the Carnot engine where two reservoirs impose a difference of temperatures
and as a consequence, a third reservoir receives work, the total effect of the
engine being to channel energy into certain macroscopic degrees of
freedom of the work reservoir. Or a plant uses the photon reservoir of the
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sun to store energy in special degrees of freedom in the form of potential
energy in highly energetic, metastable chemical bonds. The stochastic
dynamics will be inferred from the global dynamics of the external
currents. This general picture of non-equilibrium systems implies that it is
advantageous to take the reservoirs into account explicitly in the stochastic
dynamics (except for the limiting case of equilibrium dynamics), because
what often matters for the users or observers of a system is the nature of
the transitions, of the substances exchanged between the system and its
reservoirs, as well as the rates of these exchanges, even if these substances
are waste-products. On the other hand, we do not want to completely
include the reservoirs in the system under consideration, although we
should include how the reservoirs are modified during their interactions
with the system whose rates are given by the stochastic matrix elements.
Finally, a third notion is the reservoir. Any practioner of statistical physics
knows that it is a highly non-trivial concept, leading to theoretical difficul-
ties. We shall try to make as clear as possible the assumptions that are used
in our work.

It is our aim in this article, to introduce a formalism to solve these
problems, at least in the context of classical systems (no quantum effects
are considered) and of Markovian dynamics (separation of time scales).

Summary of results. In Section 2, we briefly recall the general master
equation formalism and various notations. This formalism is made more
specific in Section 3 where we explicitly introduce the coarse graining using
an a priori given entropy function, as well as the transitions between the
system and the reservoir. Two basic hypotheses are made, in particular that
each transition satisfies detailed balance for the microcanonical ensemble
of the system and reservoirs. In Section 4 a general inequality relating the
variation of the information potential and the total entropy of the system
and reservoirs is derived. In Sections 5 and 6 the Carnot dissipation is
introduced, and calculated explicitly using the cycles of transitions in the
system. This generalizes the calculation of Hill (8) to any system. In Sec-
tion 7, we consider the effect of switching off certain reservoirs and the
initial relaxation towards a new stationary state. In Section 8, we generalize
the phase transition formalism of ref. 22 to the case where eigenvalues with
modulus near 1 are complex. We show that there is again a set of phases,
so that the induced coarse grained dynamics between the phases is a per-
mutation, at an intermediate time scale. In Section 9, we introduce the
notion of resources and we give a lower bound for the dissipation of a
resources. Finally, in Section 10 we develop examples and relate our theory
to the theory of reaction-diffusion systems in the large volume limit at a
fixed temperature. Moreover, we show explicitly for 3 or 4 state systems
that the topology of the possible transitions with the reservoirs is important.
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2. STOCHASTIC DYNAMICS IN GENERAL

In this section we introduce mathematical notations to describe the
systems that we consider and discuss the physical hypotheses under which
this mathematical description is valid. We maintain the discussion as
general as possible.

A certain system is described by a state space X which is supposed to
be discrete (and usually finite, not necessarily large). A state x is a point
in X. Here, the description of the system by states x is already a coarse-
grained description obtained from a more fundamental but not necessarily
microscopic one. In particular, we can define an entropy function s(x) \ 0,
which is the logarithm of the number of fundamental states which become
coarse-grained in the description of the reduced state x.

We assume that time is discrete, the unit time step being dt. The
dynamics of the system is described by a stochastic matrix Rxy: Rxy is
the probability that the transition y Q x occurs in one time step, dt. In
particular

0 [ Rxy [ 1, C
x

Rxy=1.

A state of the system is a probability distribution p(x) on X, so that

C
x

p(x)=1.

After one time step dt, the state p(x, t) at time t becomes p(x, t+dt)

p(x, t+dt)=C
y

Rxy p(y, t) — Rp(., t)(x) (2.1)

p will be considered a right vector. If A is an observable of the system, we
define its average with respect to the state p as:

OAPp=C A(x) p(x).

After one time step dt, A(x) becomes A(x, dt) defined so that, as usual

OA(dt)Pp=OAPp(dt)

or

A(x, dt)=C
y

A(y) Ryx=(AR)x. (2.2)

and A will be considered a left vector.
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It is also useful to introduce the variations d of quantities in one time
step, namely

dp(x, t)=p(x, t+dt) − p(x, t)=C
y

Rxy p(y, t) − C
y

Ryx p(x, t) (2.3)

dA(x, t)=A(x, t+dt) − A(x, t)=C
y

Ryx(A(y, t) − A(x, t)). (2.4)

The matrix R has the eigenvalue 1 which we assume to be non-
degenerate. The right eigenvector of this eigenvalue is the stationary state
ps(x) — p0(x) satisfying

Rps=ps.

We assume the ergodicity property, namely

ps(x) > 0 for all x ¥ X.

The left eigenvector for the eigenvalue 1 is

A0(x)=1 for all x ¥ X.

The other eigenvalues are lk with |lk | [ 1.
The dynamics given by R is an equilibrium dynamics or a detailed

balance dynamics if the detailed balance condition is satisfied, namely:

Rxy ps(y)=Ryx ps(x) for all x, y. (2.5)

For any probability distribution p(x), we can define the current as the skew-
symmetric matrix

J (p)
xy =Rxy p(y) − Ryx p(x). (2.6)

The stationary current J (s)
xy is obtained for p=ps. It is identically 0 for

detailed balance dynamics.
We see that if the state is p(x, t), then

dOAPp(t)=OAPp(t+dt) −OAPp(t)

=C
x, y

A(x) J (p(t))
xy .

The entropy of a probability distribution is as usual

S(p)=−C p(x) log p(x). (2.7)
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The relative entropy of two probability distributions p, q is

S(p | q)=C p(x) log
p(x)
q(x)

. (2.8)

Then S(p | q) \ 0 and is 0 if and only if p=q. Moreover, it can be proved
that S(p | q) is non-increasing under any stochastic evolution

0 [ S(Rp | Rq) [ S(p | q) (see, e.g., ref. 19) (2.9)

For an equilibrium system with inverse temperature b the stationary
state can be written

peq(x)=
1
Z

exp(−bh(x))

=exp(−b(h(x) − Feq))

where Z=exp(−bFeq) defines the equilibrium free energy. In that case

S(p | peq)=b(F(p) − Feq),

where F(p) is the free energy of the state p, namely

F(p)=OhPp −
1
b

S(p).

It is also known and easy to see that S decreases by coarse-graining,
namely if p̃, q̃ are coarse-grained probabilities of p and q on a reduced state
space X̃, then

0 [ S(p̃ | q̃) [ S(p | q). (2.10)

In this equation we assume a collection of disjoint subsets Xx̃ of X such
that X=1x̃ ¥ X̃ Xx̃. Then we define

p̃(x̃)= C
x ¥ Xx̃

p(x)

p(x | x̃)=˛0 if x ¨ Xx̃

p(x)
p̃(x̃)

if x ¥ Xx̃
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and we easily verify that (see ref. 19)

S(p | q)=S(p̃ | q̃)+C
x̃

p̃(x̃) S(p(. | x̃) | q(. | x̃)).

For future use, we note that for any probability distribution p on X, and
any stochastic dynamics R, there is a small dt expansion

S(p | Rp)=
1
2

C
x

p(x)1 1
p(x)

C
y

J (p)
xy
22

+O((dt)3), (2.11)

where the first term is O((dt)2). To prove (2.11) note that

(Rp)(x)
p(x)

=Rxx+ C
y ] x

Rxy
p(y)
p(x)

=1+
1

p(x)
C
y

J (p)
xy .

Then

S(p | Rp)=C
x

p(x) log
p(x)

(Rp)(x)

=−C
x, y

J (p)
xy +

1
2

C
x

p(x)1 1
p(x)

C
y

J (p)
xy
22

+O((dt)3).

The first term, however, is identically 0 because J is skew-symmetric.
The interpretation of S(p | Rp) is the following: We know that − log p(x)

is the information that one gains from measuring the actual state x,
knowing that the probability distribution was p, and that S(p) is the
average (or expected) information gained in such a measurement. Then
− ; p(x) log(Rp)(x) is the average information gained if one measures
the actual state after one time step dt of the evolution by the stochastic
dynamics R, knowing that the probability distribution is p and S(p | Rp) is
the variation in one time step of the average information, knowing that the
probability distribution was p.

Remark. The sum in Eq. (2.11) makes sense in the continuum limit
of x. In this case p(x) should be replaced by p̂(x) dx and Rxy by dx r̂xy,
where p̂(x) and r̂xy are probability densities.

The description of the dynamics on the space X as a stochastic
Markovian dynamics is valid provided that each point, x ¥ X, represents
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a set of ‘‘microscopic’’ states such that the ‘‘exact’’ dynamics (of which the
stochastic one is a reduction) has fast time scales compared to the time
scale for changing the ‘‘grain’’ x. This means that we have a separation of
time scales between various degrees of freedom (see also Section 8 of this
article, ref. 22 for application to the dynamics of phases and ref. 24 for
discussion of the basis of grain selection). The hypothesis of separation of
time scales is a matter of contingency. It depends on the system studied and
may or may not be a correct assumption. But it is the standard assumption
which is at the foundation of standard statistical mechanics and thermo-
dynamics.

3. RESERVOIRS AND THE STOCHASTIC DYNAMICS

We assume that the system X is coupled to various reservoirs indexed
by a=1,..., r. The reservoir a is described by its state space Wa with states
ta ¥ Wa. Each state has an entropy sa(ta). If the joint state (x, (ta)a=1,..., r) of
the system and its reservoirs is known, the entropy of the joint state is

S(x, (ta))=s(x)+ C
r

a=1
sa(ta). (3.1)

During a variation y Q x of the system X, it may happen that the states of
the reservoirs Wa also vary. Our notation for the reservoir variation is
ga Q ta.

In particular, a given variation y Q x of the state of X can be realized
by different kinds of mechanisms involving or not involving the reservoirs.
More precisely we consider various transitions a as mappings

a: (y, (ga)) ¥ X × D
a

Wa Q (x, (ta)) ¥ X × D Wa (3.2)

(which are not necessarily defined for all states) and we assume the follow-
ing hypotheses.

Hypothesis 1. In a transition a, as in (3.2), the variations of the
states of the reservoirs Wa are functions of the states y, x of the system X
and of the transition that is considered.

Thus, given y and x, only certain ga may be allowed, and for each such
ga a particular ta is fixed.

We shall also assume that to any transition, there is an associated
inverse transition a−1 such that

a−1(a(y, (ga)))=(y, (ga)).
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We denote by R (a)
xy the probability per unit time step dt, that the transition

a occurs between states y and x of X. We assume that R (a)
xy depends only on

y and a, x being known when y and a are known. We also make the
following hypothesis.

Hypothesis 2. Each transition a satisfies an independent detailed
balance relation, namely if

a(y, (ga))=(x, (ta))

then

R (a)
xy exp(S(y, (ga)))=R(a

− 1)
yx exp(S(x, (ta))). (3.3)

If a is not defined between y and x, we define

R (a)
xy =0.

In this case a−1 is also not defined between x and y and we take

R (a
− 1)

yx =0.

We define the stochastic matrix Rxy by

Rxy=C
a

R (a)
xy (3.4)

the sum being taken on all transitions a (or inverse transitions) which relate
y to x ( for y ] x) and as usual

Rxx=1 − C
y ] x

Ryx. (3.5)

Remark. By this construction, we have further specialized to R such
that Rxy ] 0 implies Ryx ] 0.

Among all possible transitions, we distinguish

– internal transitions a which do not change the states of the reservoirs

a(y, (ga))=(x, (ga))

– external transitions aŒ which change the states of the reservoirs. An
external transition is of type a if it changes only the state of X and the state
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of the reservoir a, so ta ] ga, but not the states of reservoirs k ] a, for
which tk=gk. By a proliferation of reservoirs and as, one can demand that
each a involve changes in at most a single reservoir, but this is not neces-
sary for now.

For an internal transition a, Eq. (3.3) reduces to

R (a)
xy exp(s(y))=R(a

− 1)
yx exp(s(x)) (3.6)

and for an external transition a of type a,

R (a)
xy exp(s(y)+sa(ga))=R(a

− 1)
yx exp(s(x)+sa(ta)). (3.7)

We discuss briefly Hypotheses 1 and 2, which are obviously related.
Hypothesis 1 implies that for a given transition a, the variations of the

states of the reservoirs are known in terms of the variation of the state
of X. It means that external transitions satisfy conservation laws. As a
consequence, one can consider the joint system, system X together with the
reservoirs Wa, as a closed system denoted X+(Wa).

Hypothesis 2 says that in this closed system X+(Wa) the quotient of
the rates of transitions a and a−1 is equal to the quotient of the volumes
of the initial state (y, (ga)) and of the final state (x, (ta)) (in the closed
system), these volumes being equal, by definition, to the exponential of the
entropies of the states. This is effectively a statement of detailed balance for
the entire ‘‘universe,’’ X+(Wa) (more below).

Moreover, this detailed balance relation satisfied by a given transition
depends only on that particular transition and is independent of all the
other transitions occuring in the system. Each transition acts indepen-
dently, with rates satisfying a detailed balance relation so that each transi-
tion, by itself would tend to bring the system back to equilibrium with the
reservoir associated with that transition.

We can rewrite Eq. (3.3) as

R (a)
xy

R (a
− 1)

yx

=exp 5s(x) − s(y)+C
a

(sa(ta) − sa(ga))6 . (3.8)

Equation (3.8) implies that ;a (sa(ta) − sa(ga)) depends only on x and y
and this fact is a consequence of Hypothesis 1.

As a consequence of Eq. (3.3), the closed system X+(Wa) has a
detailed balance equilibrium probability distribution

P(x, (ta))=exp(S(x, (ta))) (up to a normalizing factor) (3.9)
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when we consider the transition probabilities R (a)
xy as transition probabilities

for the closed system X+(Wa) which are independent of the states of the
reservoirs. Nevertheless, the stationary probability for the system X, is not
obtained by a simple summation over the reservoir state (ta): if this were
the case, ps(x) would be proportional to exp(s(x)). The reason is precisely
the conservation laws between X and its reservoirs, so that ps(x) is a con-
strained sum over the (ta). We next give an example illustrating this point.

Example. Consider a system X whose states are labelled only by
their energy content, e=ne, where e is a quantum of energy and n is an
integer. This system interacts with two thermal reservoirs Wj, j=1, 2 whose
state space is also characterized by an energy variable only, ej=nje (again
nj is an integer) and the temperature of Wj is b−1

j . The entropy of Wj is

sj(ej)=bjej.

The total energy ET=e+e1+e2 is conserved in each transition. The closed
system X+W1+W2 has the equilibrium distribution, up to a normalizing
factor,

P(e, e1, e2)=exp(s(e)+b1e1+b2e2)

=exp(s(e)+(b1 − b2) e1 − b2e+b2ET).

If b1=b2, this is also the canonical probability distribution exp(−b(e − 1
b

s(e))
with the standard free energy f(e)=e− 1

b
s(e) for the system X. For b1 ] b2,

a stationary probability distribution is obtained by summing P(e, e1, e2) for
0 [ n1 [ NT−n, with NT=ET/e, n=e/e, but it does not satisfy the master
equation as is usual in these circumstances. In fact, there are only two
kinds of transitions, one for each reservoir

R (1+)
n+1, n exp(s(ne)+b1n1e)=R(1 − )

n, n+1 exp(s((n+1) e)+b1(n1 − 1) e)

corresponding to transitions with reservoir 1

(1 ± ): (n, n1, n2) Q (n ± 1, n1 + 1, n2)

and transitions

R (2+)
n+1, n exp(s(ne)+b2n2e)=R(2 − )

n, n+1 exp(s((n+1) e)+b2(n2 − 1) e)

corresponding to transitions with reservoir 2

(2 ± ): (n, n1, n2) Q (n ± 1, n1, n2 + 1).
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4. AN INEQUALITY RELATING THE VARIATIONS OF INFORMATION

AND ENTROPY

We define the information potential (see ref. 12) as

F(x)=log ps(x). (4.1)

Thus the entropy of the stationary state is −OFPps
. Recall that the varia-

tion of an observable A(x) (for the system X) in one time step is

dA(x)=C
y

Ryx(A(y) − A(x)). (4.2)

This applies in particular to F. But Eq. (4.2) cannot be applied to the
variation of S(x, (ta)) in one time step, because this variation depends not
only on the variation x Q y of the state of X, but also on the nature a of
the transition. Nevertheless, we can define for a given x:

dS(x, (ta))=C
a

R (a)
yx (S(y, (ga)) − S(x, (ta))) (4.3)

where in the summation in Eq. (4.3)

(y, (ga))=a(x, (ta)).

We want to prove the following inequality, valid for a given (x, ta):

dF(x) [ dS(x, (ta)) (4.4)

Inequality (4.4) means that the variation of the information in the station-
ary state is always less than the variation of the total entropy.

We prove the inequality (4.4). The master equation for ps(x) can be
written

C
a, y

R (a)
xy ps(y) − C

a, y
R (a

− 1)
yx ps(x)=0 (4.5)

for all x ¥ X. Using Eq. (3.3), we have

R (a)
xy =R(a

− 1)
yx exp(S(x, (ta)) − S(y, (ga))).

After reindexing the summation in Eq. (4.5), this equation can be rewritten
as

C
a

R (a
− 1)

yx [exp(F(y) − F(x)+S(x, (ta)) − S(y, (ga))) − 1]=0
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Using the fact that ea − 1 \ a with equality if and only if a=0, we deduce

C
a, y

R (a
− 1)

yx [F(y) − F(x)+S(x, (ta)) − S(y, (ga))] [ 0 (4.6)

which after rearrangements and using Eqs. (4.2) and (4.3) gives the
inequality (4.4).

We have equality for all x in (4.4), if and only if for all y, and all
transitions a: (y, (ga)) Q (x, (ta))

F(x) − F(y)=S(x, (ta)) − S(y, (ga))

which implies that the system is in detailed balance, because then Eq. (3.3)
implies that for all y and all a

R (a)
xy exp(F(y))=R(a

− 1)
yx exp(F(x)).

Remark. It is in general not true that dF(x) \ 0 for a given x ¥ X. In
particular, if one takes a point x0 where F(x0) is maximum, it is clear that
in general dF(x0) will be negative. On the other hand, in the large volume
limit, it has been proved in ref. 12, that F increases along the deterministic
flow associated with the master equation or the Fokker–Planck equation.
Moreover in this case, at a point where F is maximum, the vector field of
the deterministic flow also has a zero. On the other hand, under the
discrete stochastic dynamics of the Master equation, it can happen that F

decreases. The main problem, in the large volume limit, is that the deter-
ministic flow is not a correct approximation to the stochastic dynamics for
very long times. (of the order of the exponential of the volume) (see, e.g.,
ref. 12). The question of large volume limits will be examined in another
publication.

5. DISSIPATION IN THE STATIONARY STATE

(a) For any transition a, we can write Eq. (3.3) as

R (a)
xy =K(a)

xy exp 1
2 (S(x, (ta)) − S(y, (ga))) (5.1)

where K (a)
xy is symmetric, namely

K (a)
xy =K(a

− 1)
yx and a(y, (ga))=(x, (ta)). (5.2)
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(b) Let us now define the Carnot dissipation in the stationary state
ps(x) as

D=1
2 C

x, y, a

[S(x, (ta)) − S(y, (ga))] J (a)
xy (5.3)

where J (a)
xy is the current of the transition a

J (a)
xy =R(a)

xy ps(y) − R (a
− 1)

yx ps(x) (5.4)

so that

J (a
− 1)

yx =−J (a)
xy . (5.5)

Now

C
x, y, a

K (a)
xy J (a)

xy =0.

Indeed, in the sum in the previous equation, for each couple (a, y) of the
sum, we can find also the couple (a−1, x) in the sum and because of Eqs.
(5.2)–(5.5)

K (a)
xy J (a)

xy +K(a
− 1)

yx J (a
− 1)

yx =0.

So D becomes, using Eq. (5.1),

D= C
x, y, a

(log R (a)
xy ) J (a)

xy

=1
2 C

x, y, a

(log R (a)
xy − log R (a

− 1)
yx ) J (a)

xy (5.6)

which can be rewritten as

D=
1
2

C
x, y, a

J (a)
xy log 1 R (a)

xy ps(y)

R (a − 1)
yx ps(x)

2 (5.7)

Eq. (5.7) follows because for any fixed y, for the stationary state, one has

C
x, a

J (a)
xy =0.

This implies, because of Eq. (5.5), that

D \ 0 (5.8)
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and D=0 if and only if J (a)
xy =0 for all a and all y (namely detailed

balance).

Remark. In ref. 20, a different notion of dissipation was introduced,
namely

1
2

C
x, y

Jxy log 1Rxy ps(y)
Ryx ps(x)

2 .

This quantity is not D (the Carnot dissipation). In general for a given
variation y Q x of the state of X, the variation of the entropy of the
reservoir depends on the actual nature of the transition (labelled by a in
Eqs. (5.3)–(5.7)).

We see also that the dissipation D is equal to the dissipation of the
reservoirs, because

C
y, a

(s(x) − s(y)) J (a)
xy =0

so that Eq. (5.4) is reduced to

D=
1
2

C
x, y, a

1C
a

(sa(ta) − sa(ga))2 J (a)
xy . (5.9)

(c) We now discuss the dissipation of information in the system X.
If one starts from the state y, the dissipation of information is
− ; Rxy log Rxy. If y is distributed according to the stationary probability
distribution, the average dissipation of information in one time step dt, for
the system X is

D=−C
x, y

Rxy ps(y) log Rxy > 0. (5.10)

It is easy to see that

D=−C
x

C
y

ps(y) Rxy log Rxy.

[ − C
x

1C
y

Rxy ps(y)2 log 1C
y

Rxy ps(y)2 — S(ps)

because ps is the stationary state of X. This can be rewritten as

0 < D [ S(ps). (5.11)
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Notice that one can define another dissipation of information. For the
system together with its reservoirs, let this be

DT — − C
x, y, a

R (a)
xy ps(y) log R (a)

xy .

6. CALCULATION OF DISSIPATION USING CYCLES

In this section, we calculate the Carnot dissipation using cycles in the
state space X. First recall the construction of the stationary state.

We can consider X to be a graph whose vertices are the points x ¥ X
and the edges are the pairs (x, y), provided Rxy ] 0 (so that Ryx ] 0 by our
hypothesis). Fix x0 ¥ X. A spanning tree of root x0 is an acyclic subgraph
of the set X, containing all the points of X, and which is oriented in such a
way that all the edges (x, y) are pointing towards x0. We call C(x0) the set
of spanning trees of root x0. If T ¥ C(x0), we define the quantity

R(T)= D
[x, y] ¥ T

Rxy (6.1)

where [x, y] is an oriented edge of T, the orientation being from y to x.
We recall the following well-known result, which has been discovered

or rediscovered many times (see, e.g., refs. 8, 9, 16, and 29). The stationary
state ps(x) is

ps(x)=
1
Z

C
T ¥ C(x)

R(T) (6.2)

where Z is the normalization factor; obviously

Z= C
x ¥ X

C
T ¥ C(x)

R(T). (6.3)

This is the analogue of the partition function in a non-equilibrium situation.
We consider now a transition a ¥ A where A is the set of all possible

transitions and we want to calculate the current of that transition (in the
state ps)

J (a)
xy =R(a)

xy ps(y) − R (a
− 1)

yx ps(x). (6.4)

We calculate the term R (a)
xy ps(y), using Eq. (6.2). Begin with a spanning tree

of root y, T ¥ C(y), and look at R (a)
xy R(T). There are two cases
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(i) T contains the oriented edge [y, x] and thus R(T) contains Ryx.
In this case, if we reverse the orientation of [y, x] in T (and only of this
edge), we obtain a tree TŒ ¥ C(x) and R(TŒ) is identical to R(T) except that
Ryx in R(T) has been replaced by Rxy. Moreover the correspondence
between the trees T ¥ C(y) with [y, x] ¥ T and the trees TŒ ¥ C(x) with
[x, y] ¥ TŒ is one-to-one. Now

R (a)
xy Ryx − R (a

− 1)
yx Rxy=R(a)

xy C
aŒ ] a

− 1
R (aŒ)

yx − R (a
− 1)

yx C
aŒ ] a

R (aŒ)
xy .

So this type of tree T ¥ C(y) (resp. TŒ ¥ C(x)) containing [y, x] (resp.
[x, y]) generates a contribution to J (a)

xy which is

1
Z
1R (a)

xy C
aŒ ] a

− 1
R (aŒ)

yx − R (a
− 1)

yx C
aŒ ] a

R (aŒ)
xy
21 C

T ¥ C(y)

R(T)
Ryx

2 . (6.5)

(ii) T ¥ C(y) does not contain the oriented edge [y, x]. Because T
is a spanning tree, there is a unique sequence of oriented edges going from
x to y in T[y, xn], [xn, xn − 1],..., [x1, x] (with n \ 1) and this generates a
corresponding product in R(T), namely

Ryxn
Rxnxn − 1

· · · Rx1x.

Now in the product R(a)
xy ps(y), this tree T ¥ C(y) generates the contribution

R (a)
xy Ryxn

Rxnxn − 1
· · · Rx1x

corresponding to the oriented cycle

[x, y], [y, xn], [xn, xn − 1],..., [x1, x]

where all the points are different. We say that the cycle is simple. More-
over, if we reverse the orientation of this cycle we obtain

[y, x], [x, x1], [x1, x2],..., [xn − 1, xn], [xn, y]

and the oriented path [x, x1],..., [xn, y] induces from T a tree TŒ ¥ C(x)
which is identical to T except that the path leading from x to y in T has
been reversed to a path leading from y to x in TŒ.

Moreover, if we delete from T the edges [y, xn], [xn, xn − 1],..., [x1, x],
we obtain a union of disjoint trees spanning the rest of the graph, with
possible roots at y, xn, xn − 1,..., x1, x; this is a forest of trees F with roots on
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the cycle y, xn,..., x1, x, spanning the graph X deprived of this cycle. This
forest F is exactly the same as the one for TŒ and we call

R(F)= D
[yŒ, xŒ] ¥ F

RyŒxŒ (6.6)

the contribution of this forest.
So, we see that the trees T ¥ C(y) (and the related trees TŒ ¥ C(x))

which both do not contain [y, x] (resp. [x, y]) as an edge, give a contri-
bution to J (a)

xy which is

1
Z

C
c ¥ C(x, y)

(P (a)
xy (c) − P (a

− 1)
yx (c̄)) C

F ¥ F(c)
R(F) (6.7)

with the following notations:

(1) C(x, y) is the set of oriented simple cycles containing the oriented
edge [x, y] (and containing at least three vertices).

(2) If c ¥ C(x, y) is a cycle, c=([x, y], [y, xn], [xn, xn − 1],...,
[x1, x])

P (a)
xy (c)=R(a)

xy Ryxn
Rxnxn − 1

· · · Rx1x. (6.8)

(3) c̄ is the reverse cycle and P (a)
yx (c̄) is the corresponding contribution

P (a)
yx (c̄)=R(a

− 1)
yx Rxn yRxn − 1 xn

· · · Rxx1
. (6.9)

(4) If c is a cycle, F(c) is the set of all forests with roots on the cycle c,
which span the whole graph X, deprived of the edges of the cycle, and
R(F) is given as in Eq. (6.6).

As a consequence J (a)
xy is the sum of the contributions given by (6.5) and

(6.7). We can obviously write this sum of two kinds of terms as a sum of
type (6.7), provided we allow in C(x, y) degenerate cycles [x, y], [y, x]
with a contribution

P (a)
xy ([x, y], [y, x])=R (a)

xy Ryx

P (a
− 1)

yx ([y, x], [x, y])=R (a
− 1)

yx Rxy

because in Eq. (6.5) R(T)
Ryx

(for [y, x] ¥ T) is a contribution of the type R(F)
for the forest F obtained by deleting [y, x] from X. With this convention,

J (a)
xy =

1
Z

C
c ¥ C(x, y)

(P(a)
xy (c) − P (a

− 1)
yx (c̄)) C

c ¥ F(c)
R(F). (6.10)
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We introduce an abbreviated notation for the variation of S during a
transition a, starting from state y ¥ X

d (a)S(y)=S(x, (ta)) − S(y, (ga))

a(y, (ga))=(x, (ta)).
(6.11)

We take now a cycle

C=([x, y], [y, xn],..., [x1, x])

and use the fact that

Rxi+1xi
=C

ai

R (ai )
xi+1xi

(Eq. (3.4))

R (ai )
xi+1xi

=K (ai )
xi+1xi

exp(1
2 d (ai )S(xi)) (Eq. (5.1))

so that

P (a)
xy (c)= C

a0,..., an

K (a)
xy K (an )

yxn
· · · K (a0 )

x1x

× exp[1
2 (d (a)S(y)+d(an )S(xn)+ · · · +d (a0 )S(x))].

But by Eq. (5.2), we have

K (a)
xy =K (a

− 1)
yx

d (a
− 1)S(x)= − d (a)S(y)

so that we obtain

1
2 (P(a)

xy (c) − P (a
− 1)

yx (c̄))

= C
a1 · · · an+1

K (an+1 )
yxn

· · · K (a1 )
x1x K (a)

xy

× sinh[1
2 (d (an+1 )S(xn)+ · · · +d(a1 )S(x1)+d(a)S(y))]. (6.12)

We define now a cycle of transitions c

c=(an+1, an,..., a1, a; y) (6.13)

to be read from right to left, such that y is a point in X, indeed the initial
point, and a, a1,... are transitions so that

(an+1 p an p · · · p a1 p a)(y)=y.
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A cycle as in (6.13) gives a cycle c(c) in X

c(c)=([x, y], [y, xn],..., [x1, x]) (6.14)

but it is clear that in general the cycle c contains more information than
c(c), because c specifies the nature of the transitions.

We shall denote by C (a)(y) the set of cycles c (initial point y and first
transition a) as in Eq. (6.13) such that c(c) is a simple cycle (two points of
c(c) are distinct).

We denote by dcS the total variation of S over c

dcS=d(an+1 )S(xn)+ · · · +d(a1 )S(x1)+d(a)S(x). (6.15)

Using this notation and Eq. (6.12), we see that Eq. (6.10) can be
rewritten as

J (a)
xy =

2
Z

C
c ¥ C

(a)
(y)

(K(an+1 )
yxn

· · · K (a1 )
x1x K (a)

xy sinh(1
2 dcS)) C

F ¥ F(c(c))
R(F) (6.16)

where in the sum,

c=(an+1,..., a1, a; y).

We also allow n=0, in which case c=(a−1, a; y). We can now calculate the
Carnot dissipation given by Eq. (5.3). Using the notation of Eq. (6.11), we
have

D=1
2 C

y, a, x
d (a)S(y) J (a)

xy .

But using Eq. (6.16), we see immediately by rearranging the sums

D=
1
Z

C
c

K (an+1 )
yxn

· · · K (a1 )
x1x K (a)

xy (dcS) sinh(1
2 dcS) C

F ¥ F(c(c))
R(F) (6.17)

where now the sum is over all possible cycles

c=(an+1, an,..., a1, a; y). (6.18)

But x sinh x is non-negative and equals zero only at x=0, so that D \ 0
and is zero if and only if for each cycle c, either dcS=0 or the cycle has no
weight, i.e., the product along the cycle of the matrix elements

R (an+1 )
yxn

· · · R (a)
xy =0.
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The expression (6.17) for D can be rewritten as

D=C
c

(dcS) Ic (6.19)

where Ic is a net current along the cycle c namely

Ic=
1
Z

K (an+1 )
yxn

· · · K (a1 )
x1x K (a)

xy sinh(1
2 dcS) C

F ¥ F(c(c))
R(F). (6.20)

If we split the sinh function, we see that

Ic=I+
c − I−

c .

Then

I+
c

I−
c

=exp(dcS).

We can interpret Ic as the number of times a cycle c is performed in a unit
time step dt (see also, e.g., ref. 8 for a less general formalism, at a fixed
temperature).

Near equilibrium, the d (a)S are small and one can expand the sinh
function to first order. On obtains as usual a quadratic expansion for D (as
in ref. 8)

D ’ 1
2 C

c

kc(dcS)2 (6.21)

where

kc=
1
Z

K (an+1 )
yxn

· · · K (a)
xy C

F ¥ F(c(c))
R(F).

We can interpret Eq. (6.20) as a diagonalization procedure for the quadra-
tic form D in terms of the dcS. We notice that each cycle c contributes a
positive term in the Carnot dissipation.

7. SWITCHING OFF RESERVOIRS

(a) We consider a stochastic dynamics as in Section 3, defined by the
R (a). Suppose that we suddenly switch off certain external transitions a.
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Namely, we assume that one can express the set of external transitions as
Aext=A −

ext 2 A'

ext, and we define a new dynamics R̃ by the formulas:

R̃ (a)=R (a) for a ¥ A −

ext 2 A int

R̃ (a)=0 for a ¥ A'

ext.
(7.1)

We assume that if a ¥ A −

ext (resp. A'

ext), then also the inverse transition
a−1 ¥ A −

ext (resp. A'

ext). The diagonal elements Rxx of R are modified
accordingly (so as to restore ;y Rxy=1).

We can define the relative entropy S(ps | R̃ps) exactly as in Eq. (2.11)
with the current

J̃ (ps )
xy =R̃xy ps(y) − R̃yx ps(x).

where ps is the stationary state of R. But we know that in the dynamics R,
for the stationary state one has

C
y

J (ps )
xy =0

and

R̃xy= C
a ¥ A −

ext
a internal

R (a)
xy =Rxy − C

a ¥ A'

ext

R (a)
xy

so that

− J̃ (ps )
xy = C

a ¥ A'

ext

R (a)
xy ps(y) − C

a ¥ A'

ext

R (a)
yx ps(x)

= C
a ¥ A'

ext

(R (a)
xy ps(y) − R (a

− 1)
yx ps(x).

Then from Eq. (2.11), we obtain

S(ps | R̃ps)=
1
2

C
x

ps(x) 1 1
ps(x)

C
y

C
a ¥ A'

ext

J (a)(ps )
xy

22

+O(dt3). (7.2)

Here ;a ¥ A'

ext
J (a)(ps )

xy is the sum of currents of the dynamics R, due to the
external transitions that have been switched off.

Creation, Dissipation and Recycling of Resources 1339



(b) Let us again split the set Aext of external transition a, as
Aext=A −

ext 2 A'

ext and define the quantity

DAŒ=
1
2

C
x, y ¥ X
a ¥ AŒ

J (a)
xy log 1 R (a)

xy ps(y)

R (a
− 1)

yx ps(x)
2 . (7.3)

Here, as before, the splitting A=AŒ 2 Aœ is such that if a ¥ AŒ, then
a−1 ¥ AŒ also. Clearly

DAŒ \ 0. (7.4)

As a consequence, we can expand the quantity DAŒ as we did in Section 5,
to obtain

1
2 C

x, y ¥ X
a ¥ AŒ

d (a)S(y) J (a)
xy =DAŒ+

1
2 C

x, y ¥ X
a ¥ AŒ

(F(x) − F(y)) J (a)
xy (7.5)

using the definition (6.11) of d (a). But

d (a)S(y)=s(x) − s(y)+d(a) 1C
a

sa
2(y) (7.6)

(we recall that by our assumption d (a)(;a sa)(y) depends only on y and a).
Thus we can rewrite (7.5) using the inequality (7.4) as

1
2 C

x, y ¥ X
a ¥ AŒ

d (a) 1C
a

sa
2(y) J (a)

xy =DAŒ+
1
2 C

x, y ¥ X
a ¥ AŒ

(F(x) − s(x) − (F(y) − s(y))) J (a)
xy

\ 1
2 C

x, y ¥ X
a ¥ AŒ

(F(x) − s(x) − (F(y) − s(y))) J (a)
xy .

(7.7)

One can interpret the inequality (7.7) in two ways.

(1) In general, the variation of the entropies of the reservoirs asso-
ciated with a subset AŒ of the external transitions is not a positive quantity.
Only the total variation of the entropies of all reservoirs for all transitions
is positive. Nevertheless, this variation of the entropies of the reservoirs
associated with a subset AŒ of external transitions is bounded from below
by the corresponding variation of the state function F − s, where F is the
information potential log ps and s is the entropy state function of the
system.
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(2) A second interpretation is the following. Write Aext=AŒ 2 Aœ

and, as in Eq. (7.1), define a new dynamics R̃ obtained by switching off the
transitions a ¥ Aœ. The stationary state ps of the initial dynamics R is no
longer the stationary state of the new dynamics R̃, so that in the first time
step dt, ps starts to evolve. Then the quantity

1
2 C

x, y ¥ X
a ¥ AŒ

(daS)(y) J (a)
xy (7.8)

is the variation in the first time step dt after the transitions a ¥ Aœ have
been switched off, of the total entropy (system and its reservoirs), averaged
over the stationary state (from which we were starting initially and which is
beginning to be displaced by the new dynamics). This quantity (7.8) has no
reason to be positive (heat, for example, will flow in or out). Nevertheless,
it is always larger than the corresponding variation of the information
potential

1
2 C

x, y ¥ X
a ¥ AŒ

(d (a)S)(y) J (a)
xy \ 1

2 C
x, y ¥ X
a ¥ AŒ

(F(x) − F(y)) J (a)
xy . (7.9)

8. NEAR DEGENERACY AND PHASE TRANSITIONS

In ref. 22, we developed a general theory of first order phase transi-
tions for any stochastic dynamics. Our main result was the following: Let
us assume that the stochastic matrix R has r − 1 real eigenvalues different
from 1, but very close to 1, and that all the other eigenvalues are far
from 1. Then the system X has r different phases which are long lived.
Namely, one can find r disjoint subsets K1,..., Kr of X and r probability
distributions p1 · · · pr such that

(i) the pj are approximate eigenstates of R s of eigenvalue 1 for s not
too large.

(ii) pj is almost supported by Kj in the sense that the probability of
o Kj (the complementary set of Kj) for pj is very small.

(iii) the union of all Kj, 1 r
j=1 Kj, exhausts X, up to a set of very

small probability for the stationary state ps of X.

In this section we extend this result to the case when R has complex
eigenvalues with modulus close to 1.
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Let us assume that R has

(i) 2m complex conjugate eigenvalues a1, ag
1 ,..., am, ag

m, with complex
eigenstates u1+iv1,..., um+ivm

(ii) a real eigenvalues b1,..., ba (different from 1) with real eigenstates
w1,..., wa, and that the null space of these eigenvalues is exhausted by these
eigenvectors (i.e., no Jordan form is needed for a or b).

We also assume that there exists an intermediate time scale t (t is an
integer here) such that for all 1 [ j [ m, all 1 [ k [ a

(i) 1 − |aj | t and 1 − |bk | t are small of order e

(ii) |lŒ| t [ e for all eigenvalues lŒ different from the a j’s and bk’s.

Thus, the modulus of the eigenvalues of R t, a t
j, agt

j , b t
k are very close

to 1, while the modulus of the other eigenvalues of R t are far away from 1.
We assume also that there exist integers pj and qj such that

aj=|aj | exp 12ippj

qj

2 (8.1)

and that Q=<p
j=1 qj [ 0(t). Using the results of ref. 22, we see that the

matrix RQ has eigenvalues 1, |aj |Q, bQ
k very close to 1, and the other eigen-

values lQ are far from 1, so that RQ has a phase transition (in the sense of
ref. 22), with r=2m+a+1 phases (each |aj |Q is doubly degenerate). We call
p1,..., pr the states associated with these phases for RQ. The construction of
ref. 22 shows that the phases p1,..., pr are, up to a small vector (of the order
of |l| t for the eigenvalues l of R different from the aj and bj), linear com-
binations of the stationary state ps and the eigenstates uj, vj and wk of the
|aj |Q and bQ

k .
Call V the vector space generated by p1,..., pr. Up to small error,

R maps V into itself because V is essentially generated by ps, uj, vj, wk.
Moreover the eigenvalues of R|V are 1, aj, ag

j and bk and thus (R|V)Q

has eigenvalues 1, |aj |Q, |bj |Q which are 1 up to e. That is,

(R|V)Q 4 IdV+O(e) (e definition Eq. (8.1)). (8.2)

Now consider the set F={p1,..., pr} of the r phases of RQ. We want
to prove that R|V induces a stochastic matrix C on the set F, modulo e. We
know that for all 1 [ k [ r

Rpk — (R|V) pk= C
r

j=1
cjk pj+O(e) (8.3)
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We must prove that up to O(e):

(i) 0 [ cjk [ 1

(ii) ; r
j=1 cjk=1

(i) The probability distributions pj are supported by disjoint subsets Sj,
j=1,..., r of X, up to error e. So if we take the value of Eq. (8.3) at x and
sum over x ¥ Sj0

, we obtain

C
x ¥ Sj0

(Rpk)(x)= C
r

j=1
cjk C

x ¥ Sj0

pj(x) (mod e)

The first member of this equation is a real number between 0 and 1,
because pk is a probability distribution and R is stochastic, and the second
member is cj0k (mod e), so that

0 [ cj0k [ 1 (mod e)

(ii) Now let us take the value of Eq. (8.3) at x and sum over all
x ¥ X. We obtain

1= C
x ¥ X

(Rpk)(x)= C
r

j=1
cjk C

x ¥ X
pj(x)= C

r

j=1
cjk+O(e)

so that we have proved that (cjk) is stochastic matrix (indexed by the set F

of the phases), at least, up to terms O(e). The stationary probability distri-
bution ps is in V so that one can find real numbers, p1,..., pr with

ps(x)= C
r

j=1
pj pj(x)+O(e).

By summing over x ¥ X, we have

C
r

j=1
pj=1+O(e)

and by summing over x ¥ Sj, we have ;x ¥ Sj
ps(x)=pj+O(e) (supp pj

… Sj) so that 0 [ pj [ 1 up to O(e) terms.
Moreover the vector p=(pj)j=1 · · · r is the right eigenvector of eigen-

value 1 of the matrix C=(cjk) and is a probability distribution. Indeed pj

is the stationary probability of phase number j:

pj= C
x ¥ Sj

ps(x)+O(e). (8.4)
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Let q=(qj)j=1 · · · r be any probability distribution on the set F of the r
phases and let us calculate S(q | p). The fundamental property of S
(Eq. (2.9)) implies that in the evolution C on the set of phases

S(q | p) \ S(Cq | p) \ · · · \ S(CQq | p) 4 S(q | p).

This follows because CQ 4 IdV+O(e), due to Eq. (8.2), and the fact that C
is R|V in the basis of the pj, using Eq. (8.3). This means that for any prob-
ability distribution q on the set of phases F

S(q | p) 4 S(Cq | p)+O(e). (8.5)

From these results, we shall conclude that R induces on the set of phases F,
up to error e, a stochastic matrix which is a permutation of the phases.

To prove this, we need the following lemma.

Lemma. let X be a finite set, M a stochastic matrix on X such that
for any probability distribution q on X

S(q | qs)=S(Mq | qs) (8.6)

where qs is the stationary state of M. Then M is a permutation matrix
(assuming qs(x) ] 0 for all x ¥ X).

Proof of the Lemma. Take for q(x)=dx, y for a given y ¥ X, so that
equality (8.6) means

− log qs(y)=C
x

Mxy log
Mxy

qs(x)
.

Using the fact that ; Mxy=1, because M is stochastic, one obtains

C
x

Mxy log Mxy=C
x

Mxy log
qs(x)
qs(y)

. (8.7)

Now take for y a point x0 in X with

qs(x0)=min
x ¥ X

qs(x).

So the second member of Eq. (8.7) is obviously \ 0 while the first member
is obviously [ 0; therefore they are both 0, which means that each term
(\ 0) of the second member of Eq. (8.7) is 0, and each term ([ 0) of the
first member of Eq. (8.7) is 0. This implies that for all x ¥ X, Mxx0

=0 or 1,
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so that there is only a single x1 with Mx1x0
=1 and for x ] x1, Mxx0

=0.
Moreover qs(x1)=qs(x0).

If x1=x0, {x0} is a trivial cycle by itself and we can remove x0 from X
and use a recursion argument.

If x1 ] x0, we apply Eq. (8.7) to y=x1 and by the same argument as
before (also using the fact that qs(x1)=qs(x0), so that log[qs(x0)/qs(x1)]
=0), we deduce that there is a (unique) x2 with

Mx2x1
=1, Mxx1

=0, x ] x2

qs(x2)=qs(x1)=qs(x0).

Now x2 ] x1, because if x2=x1 we would have

qs(x1) \ Mx1x2
qs(x2)+Mx1x0

qs(x0)=2qs(x0),

which is impossible.
If x2=x0, then {x1, x0} is a cycle and we can remove {x1, x0} from X

and use recursion.
If x2 ] x0, we apply Eq. (8.7) to y=x2 and use log[qs(x0)/qs(x2)]

=log[qs(x1)/qs(x2)]=0. Then there is a unique x3 with

Mx3x2
=1, Mxx2

=0, x ] x3

qs(x3)=qs(x2)=qs(x1)=qs(x0).

etc...
Finally, we see that for any y, there exists a unique x with

Mxy=1, Mzy=0 (z ] x)

So M is a permutation matrix.

9. CREATION AND DISSIPATION OF RESOURCES

In this section, we make more specific assumptions about the system
and its reservoirs and interpret various quantities.

Assume that there exists a set L of state functions fl(x) defined on the
state space X of the system, for l ¥ L. These functions are ‘‘resources,’’ for
example energy in a physical system or water in an ecological system.
Assume also that any reservoir Wa, 1 [ a [ r, is associated with a function
fl(a) for a certain l (a), so that l (•) is a mapping

l(•): {1,..., r} Q L.
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Hypothesis 3. We assume that for any 1 [ a [ r, fl(a) is also a state
function on the space Wa of the reservoir a and that the value of fl(a)

characterizes the state ta of Wa. In particular, the entropy sa(ta) of Wa, is a
function sa(fl(a)).

Hypothesis 4. We assume that each external transition a ¥ Aext is
associated with a specific reservoir Wa(a); in other words, it is a transition of
type a(a) so that during the transition a, the state y of the system X and the
state ga(a) of the reservoir Wa(a) vary, and the other reservoirs do not vary.
Thus

a: (y, (ga)) Q (x, (ta)) (9.1)

with ta=ga for a ] a(a). Moreover, we assume that during the transition, a,
defined as in (9.1), fl(a(a)) is a conserved quantity, so that

fl(a(a))(x) − fl(a(a))(y)=fl(a(a))(ga(a)) − fl(a(a))(ta(a)) (9.2)

where (y, (ga))=(x, (ta)).

We comment briefly these two hypotheses. The whole system+reser-
voirs has certain resources which are measured by state functions fl

(l ¥ L). Each reservoir Wa is the reservoir of a specific resource l(a) and the
amount of that resource in the reservoir Wa characterizes the state ta of the
reservoir. In particular, the entropy sa of Wa is a function of the amount of
associated resource in the reservoir Wa. We also assume that each external
transition a ¥ Aext couples the system to a single reservoir Wa(a) and the
corresponding resource fl(a(a)) is conserved during the transition a. This
means that external transitions are processes of exchange or transport of
the corresponding resource between the system X and the reservoir Wa(a) to
which X is coupled during the transition a. We introduce an abbreviated
notation:

l(a) — (l(a(a)) for a ¥ Aext. (9.3)

We do not assume, at first, that there are conserved quantities. In particular,
during the internal transition a ¥ Aint, the state functions fl may, in
general, vary.

Remark. These two hypotheses may not be valid. An external tran-
sition could couple the system to several reservoirs simultaneously, and the
conserved quantities, during that transition, could themselves be functions
of the various fl of the reservoirs.
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The inequality D \ 0 for the Carnot dissipation can be rewritten by
summing over the resources fl. We obtain

C
l

C
{a: l(a)=l}

x ¥ X

J (a)
xy d (a)sa(a)(fl)(ga(a)) \ 0 (9.4)

with

d (a)sa(fl)(ga)=sa(fl(ta)) − sa(fl(ga)) (9.5)

where a(y, (ga))=(x, (ta)) is the transition. Moreover, we also obtain a
lower bound, as a particular case of inequality (7.7), by fixing a certain
l ¥ L and summing over all external transitions a ¥ A (l)

ext such that l(a)=l.

C
{a: l(a)=l}

x, y ¥ X

J (a)
xy d (a)sa(a)(fl)(ga) \ C

{a: l(a)=l}
x, y ¥ X

J (a)
xy d (a)(F − s)(y). (9.6)

On the other hand, fl(x) is a state function on X and it varies only during
external transitions a ¥ A (l)

ext with l(a)=l and possibly during internal
transitions a ¥ Aint. So

C
{a: l(a)=l}

x, y ¥ X

J (a)
xy d (a)fa(y)+ C

a ¥ Aint
x, y ¥ X

J (a)
xy d (a)fl(y)=0. (9.7)

The second sum in Eq. (9.7) is the internal production of the resource fl

inside the system X during internal transitions, while the first sum in
Eq. (9.7) is the net variation of the resource fl due to the coupling to the
reservoirs associated with the resource fl.

During the transition a: (y, (ga)) Q (x, (ta)) one has

d (a)fl(y)=−d (a)fl(ga) (9.8)

so that

C
{a: l(a)=l}

x, y

J (a)
xy d (a)fl(ga)= C

a ¥ Aint
x, y ¥ X

J (a)
xy d (a)fl(y). (9.9)

Equations (9.6)–(9.9) are generalized forms of Carnot efficiency inequalities
for the resource fl.

Finally Eq. (9.6) can be rewritten as

C
{a: l(a)=l}

x, y ¥ X

J (a)
xy d (a)F [ C

{a: l(a)=l}
x, y ¥ X

J (a)
xy d (a)S(y, (ga)). (9.10)
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This says that the variation of the information potential during certain
external transitions is less than the variation of total entropy during the
same transitions.

10. EXAMPLES AND APPLICATIONS; HEAT AND WORK

Example 1. Detailed balance systems.

In detailed balance systems, at equilibrium, all transitions have a zero
current by definition. The dissipation, or partial dissipations are all 0.
Nothing happens at equilibrium.

Example 2. Reaction diffusion systems at a fixed temperature.

These systems have been considered in refs. 10 and 12. The state space
of the system is characterized by the number of particles of various chemi-
cal species, possibly in different cells. The reservoirs are reservoirs of
certain species at a given temperature b−1 and given chemical potentials,
and there is also a reservoir of energy at temperature b−1. So, there are
chemical species i=1,..., s and chemical species a=1,..., r whose number
of particles are denoted by xi and aa respectively. An element of the state
space is ((xi)i=1,..., s, (aa)a=1,..., r). For any a, there is a single reservoir Wa

with state ta which is the number of particles of species a in the
reservoir Wa. The entropy of Wa is

sa(ta)=bmata (10.1)

where b−1 is the temperature, ma is the chemical potential of species a in the
reservoir Wa. The resource corresponding to Wa is fa(x, a)=aa.

There is also an energy reservoir W0. Its state t0 is an energy content
and it entropy is

s0(t0)=bt0 (10.2)

The corresponding resource f0(x, a) is a state function corresponding to
the internal energy. The free energy is

F(x, a)=f0(x, a) − b−1s(x, a) (10.3)

where s(x, a) is the entropy of the system. There are two kinds of
transitions:
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(i) transitions a ±
a of exchange of a particle of species a between the

system and the reservoir Wa.

a± 1
a ((y, b), (ga)a \ 0) Q ((x, a), (ta)a \ 0) (10.4)

with

xi=yi

ak=bk (k ] a) aa=ba ± 1

tk=gk (k ] a) ta=ga + 1.

During the transition aa the variation of the total entropy is

s(x, a) − s(y, b) − bma

and we have

R (a
a
)

(x, a), (y, b)

R (a
− 1
a )

(y, b), (x, a)

=exp(s(x, a) − s(y, b) − bma) (10.5)

(ii) There are also chemical reactions inside the system which change
the number of particles xi and aa. These reactions induce a variation of
the energy content of the system which is then exchanged with the energy
reservoir. There is no exchange of particles with the reservoir. For a
chemical reaction:

a: ((y, b), (ga)a \ 0) Q ((x, a), (ta)a \ 0) (10.6)

we see that the differences xi − yi, aa − ba are given by the stoichiometric
numbers of the reaction. We have also ta=ga for a \ 1, but t0 − g0=
energy released by the reaction=f0(y, b) − f0(x, a). The total entropy of
((y, b), (ga)a \ 0) is

s(y, b)+bg0+b C
a \ 1

maga

and the variation of the total entropy in the process a is

s(x, a) − s(y, b)+b(f0(y, b) − f0(x, a))=b(F(y, b) − F(x, a)).

Thus

R (a)
(x, a), (y, b)

R (a − 1)
(y, b), (x, a)

=exp(b(F(y, b) − F(x, a))). (10.7)
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In the absence of reservoirs Wa of species a \ 1, but in presence of the
reservoirs of energy W0, the only processes are the chemical processes
related by Eq. (10.7). So the system reaches the thermal equilibrium distri-
bution exp(−bF(x, a)) and is in detailed balance. The role of the reservoirs
(Wa)a > 1 of species a, is to maintain the chemical potential ma of species a

constant in the stationary state of the system. If the imposed value ma is
not the chemical potential “F

“aa

at the minimum of the free energy F, the
system will reach a stationary state which is not an equilibrium state.

It is easy, for such species a, to rewrite inequality (9.6). There is only
one exchange process with the reservoirs, which changes species a, which
is aa. During aa, sa varies by − bma. The inequality (9.6) can therefore be
rewritten as

− bma C
(y, b) ¥ X
(x, a) ¥ X

J (a
a
)

(x, a), (y, b) \ C
(y, b) ¥ X
(x, a) ¥ X

J (a
a
)

(x, a), (y, b)d
(a

a
)(F − s)(y, b). (10.8)

For the energy reservoir we obtain:

b C
a chemical
(y, b) ¥ X
(x, a) ¥ X

J (a)
(x, a), (y, b)(f0(y, b) − f0(x, a)) \ C

a chemical
(y, b) ¥ X
(x, a) ¥ X

J (a)
(x, a), (y, b)d

(a)(F − s)(y − s)
(10.9)

where, in these two inequalities we define as usual

(d (a)g)(y, b)=g(x, a) − g(y, b).

The total dissipation D in the stationary state is the sum of the first
members of inequalities (10.8) and (10.9). Because the sum of the second
members is zero, due to the fact that F − s is a state function, we see that
D \ 0, as we already know. Moreover, we can also rewrite inequality (10.9)
as

C
a chemical
(y, b) ¥ X
(x, a) ¥ X

J (a)
(x, a), (y, b)(d (a)F)(y, b) [ − b C

a chemical
(y, b) ¥ X
(x, a) ¥ X

J (a)
(x, a), (y, b)(d (a)F)(y, b).

(10.10)

The variation of the information potential during chemical processes is less
than the variation of the free energy.

Remark. The situation of homogeneous reaction-diffusion system at
a fixed temperature was discussed at length in refs. 10 and 12 but with the
following differences.
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(1) time was a continuous rather than a discrete variable.

(2) we discussed the situation of large volume asymptotics so that the
numbers of particles are replaced by concentrations (taking continuous
values). In this context, we obtained more specific properties for the
information potential which are not in general valid for a discrete system
(see also Section 1 above for motivation). We could also study the relaxa-
tion to the stationary (non-equilibrium state) and derive a general inequal-
ity relating the rate of dissipation and the rate of variation of the informa-
tion potential.

Inhomogeneous reaction-diffusion systems (with several temperatures
and fixed chemical potentials) will be discussed elsewhere.

Example 3. The Carnot engine.

In the Camot engine, the system X is coupled to three energy reser-
voirs W1, W2, W.. The only resource f0(x) is an energy variable, which can
be exchanged with the reservoirs. The variables of the reservoirs are
t1, t2, t. with the entropies:

s1(t1)=b1t1 s2(t2)=b2t2 s.(t.)=0.

The system has both internal transitions (which conserve the energy f0(x))
and external transitions with the reservoirs. Recalling that the dissipation
in the stationary state D is non-negative, we obtain

C
y ¥ X
x ¥ X

J (a1 )
xy d (a1 )s1+ C

y ¥ X
x ¥ X

J (a2 )
xy d (a2 )s2 \ 0. (10.11)

where a1, a2 are the transitions coupling X to the reservoirs W1, W2. More-
over because f0 does not vary during the internal transitions, in the sta-
tionary state we have

0= C
y ¥ X
x ¥ X

J (a1 )
xy d (a1 )f0(y)+ C

y ¥ X
x ¥ X

J (a2 )
xy d (a2 )f0(y)+ C

y ¥ X
x ¥ X

J (a. )
xy da.f0(y). (10.12)

With obvious notation, this can be rewritten as

0=d1Q1+d2Q2+d.W (10.13)
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where d1Q1 (resp. d2Q2, resp. d.W) is the energy gained by X in the tran-
sition coupling X to W1 (resp. to W2, resp. to W.) and inequality (10.11) is
thus

− b1d1Q1 − b2d2Q2=D \ 0. (10.14)

Assume b1 < b2. By eliminating d2Q2 between (10.13) and (10.14) we
obtain the Carnot inequality

− d.W=1b2 − b1

b2

2 d1Q1 −
D

b2
[

b2 − b1

b2
d1Q1 (10.15)

( − d.W is the work that can be extracted from the engine and d1Q1 is the
heat coming from the hot reservoir).

In fact, from inequality (9.6), we obtain

− b1d1Q1 − b2d2Q2 \ (d1+d2)(F − s) (10.16)

where (d1+d2)(F − s) is the variation of F − s during the external transi-
tions coupling X to the energy reservoirs W1, W2. From this we deduce

− d.W [
1
b2

(d1+d2)(s − F)+
b2 − b1

b2
d1Q1. (10.17)

In case (d1+d2)(s − F) [ 0, this would provide a worse bound than the
usual Carnot estimate

− d.W [
b2 − b1

b2
d1Q1.

It can happen that d.W \ 0, so that the system X receives work from
the reservoir W.. In this case, the Carnot engine is a refrigerator. But in
any case, the dissipation D is positive.

Example 4. Three-state systems.

(a) Generalities. We consider here the simplest systems which can
present non-trivial currents, namely three-state systems. Although they are
simple, there are surprises. The states of the system X are labelled {1, 2, 3}.
The stochastic matrix is Rxy and the stationary state is
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ps(1)=
1
Z

(R12R23+R13R32+R12R13)

ps(2)=
1
Z

(R21R13+R23R31+R21R23) (10.18)

ps(3)=
1
Z

(R31R12+R32R21+R31R32)

here Z is the normalization factor. The current of the total transition i \ j
is J12

J12=(R12 ps(2) − R21 ps(1))

J12=
1
Z

(R12R23R31 − R13R32R21) and

J12=J23=J31 (by conservation of currents).

We shall denote:

s(x) the entropy of the state x

e(x) the energy of the state x (it will be the only resource of the system
and its reservoirs).

Wa, Wb, W. the energy reservoirs at temperature b−1
a , b−1

b and the work
reservoir respectively. Wa has entropy baea, Wb has entropy bbeb (ea and eb

are the energies of Wa and Wb), and W. has entropy 0.

In all situations, the transitions will be external transitions with one of
the reservoirs and they conserve energy.

(b) 1st situation: a single cycle.

We assume that 1 \ 2 is at temperature b−1
a , 2 \ 3 is at temperature

b−1
b , 3 \ 1 is the work transition, so that we can define

R21=a exp(1
2 (s21 − bae21))

R12=a exp(1
2 (s12 − bae12))

R32=b exp(1
2 (s32 − bbe32))

R23=b exp(1
2 (s23 − bbe23))

R31=c exp(1
2 s31)

R13=c exp(1
2 s13)
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Here sxy=s(x) − s(y), exy=e(x) − e(y). The current is

J21=
2abc

Z
sinh 51

2
(bbe23+bae12)6=J32=J13. (10.19)

In the transition 1 Q 2, the variation of the entropy of the reservoir Wa is
bae12 and in the transition 2 Q 3, the variation of the entropy of Wb is bbe23.
The total Carnot dissipation is thus:

D=
2abc

Z
(bbe23+bae12) sinh 11

2
(bbe23+bae12)2 (10.20)

which is obviously positive.
Assume that ba < bb (Wa is the hot reservoir)

daQa=e21J21

d.W=e13J13=e13J21.

Let us assume that e(2) > e(1), so e21 > 0. Then J21 > 0 if bbe23+bae12 > 0,
and d.W < 0 if e(1) < e(3). The Carnot efficiency is

g —
|d.W|
daQa

=
e31

e21
. (10.21)

Because (bb − ba) e21+bbe13 > 0, we see that

g <
bb − ba

bb
.

We could also have e21 > 0 but J21 < 0, in which case the work is > 0
and daQa < 0, so that the three state system functions as a refrigerator.

(c) 2nd situation: three cycles.

Let us assume that ba < bb and the transitions 1 \ 2, 2 \ 3 are exter-
nal transitions with the reservoir Wa, so

˛R (a)
xy =a exp(1

2 (sxy − baexy))

(x, y)=(1, 2), (2, 1), (2, 3), (3, 1)
(10.22)
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On the other hand the transitions 1 \ 3 are of two types: a transition
with the reservoir Wb

R (b)
xy =b exp(1

2 (sxy − bbexy))

(x, y)=(1, 3), (3, 1)
(10.23)

or transition with the reservoir W. (work transition)

R (W)
xy =c exp(1

2 sxy) (x, y)=(1, 3), (3, 1) (10.24)

so that

Rxy=R(b)
xy +R(W)

xy (x, y)=(1, 3), (3, 1).

In this case, there are three cycles. After calculation we obtain

J12=J23=
1
Z

(R23R31R12 − R32R21R13)

J12=J23=
2
Z
5a2b sinh 11

2
(bb − ba) e13

2+a2c sinh 11
2

bae31
26

(10.25)

One can also obtain the current of the transition 1 \ 3 with the reservoir at
temperature b−1

b

J (b)
13 =R (b)

13 ps(3) − R (b)
31 ps(1)

=
1
Z

[(R(b)
13 R (W)

31 − R (b)
31 R (W)

13 )(R32+R12)+R(b)
13 R32R21 − R (b)

31 R12R23]

or after calculation

J (b)
13 =

2
Z
5abc sinh 1bbe31

2
21exp 11

2
s32 −

ba

2
e32

2

+exp 11
2

s12 −
ba

2
e12

22+a2b sinh 1bb − ba

2
e31

26 . (10.26)

The variation of entropy of the reservoir Wa is

− (J21bae21+J23bae23)=J23bae31.
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The variation of entropy of the reservoir Wb is

− J (b)
13 bbe13.

The total Carnot dissipation is thus

D=e31(baJ23+bbJ (b)
13 ).

Using Eqs. (10.25) and (10.26), we obtain

D=
2
Z
5abcbbe31 sinh 1bbe31

2
21exp 11

2
s32 −

ba

2
e32

2+exp 11
2

s12 −
ba

2
e12

22

+a2cbae31 sinh 1bae31

2
2+a2b(bb − ba) e31 sinh 11

2
(bb − ba) e31

26 .

(10.27)

D is indeed positive; in fact each term of Eq. (10.27) is positive. Each term
corresponds to one of the three cycles.

The current J (W)
13 =R(W)

13 ps(3) − R (W)
31 ps(1) of the work transition is

obtained using the conservation law for currents in the stationary state
(at state 3).

J (W)
13 =−(J23+J(b)

13 ).

We obtain from Eqs. (10.25) and (10.26)

J (W)
13 =−

2
Z
5(abc) sinh 1bbe31

2
21exp 11

2
s32 −

ba

2
e32

2

+exp 11
2

s12 −
ba

2
e12

22+a2c sinh 11
2

bae31
26 . (10.28)

The work exchanged between the system and W., is

d.W=e13J (W)
13

so that d.W > 0. This means that the system is always extracting work
from the reservoir W..

We also see that if bb > ba (W. is the hot reservoir), the heat exchan-
ged with Wb is

dbQb=e13J (b)
13 < 0 (see Eq. (10.26))
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while the heat exchanged with Wa is

daQa=e13J23 < 0 (see Eq. (10.25))

and the system pumps work and transforms it into heat in both reservoirs
(if bb > ba). On the other hand if bb < ba, d.W > 0 (the system pumps
work) but it may work as a refrigerator.

(d) 3rd situation.

In this situation, transitions 1 \ 2 are at temperature ba, transitions
2 \ 3 are at temperature bb and transitions 1 \ 3 are either at temperature
bb or are transitions of work

and

R (a)
xy =a exp(1

2 (sxy − baexy)) (x, y)=(1, 2), (2, 1)

R (b)
xy =b exp(1

2 (sxy − bbexy)) (x, y)=(2, 3), (3, 2), (1, 3), (3, 1)

R (W)
xy =c exp(1

2 sxy) (x, y)=(1, 3), (3, 1)

Rxy=R (b)
xy +R (W)

xy (x, y)=(1, 3), (3, 1).

Again J12=J23=1
Z (R23R31R12 − R32R21R13)

J23=
2
Z
5ab2 sinh 11

2
(bb − ba) e12

2+abc sinh 11
2

bae21+bbe32
26

and

J (b)
13 =

2
Z
5bc sinh 1bbe31

2
21b exp 11

2
s32 −

bb

2
e32

2+a exp 11
2

s12 −
ba

2
e12

22

+ab2 sinh 11bb − ba

2
2 e21

26

J (W)
13 =− (J(b)

13 +J23)

=
2
Z
5abc sinh 11

2
bae12+

1
2

bbe23
2

+bc sinh 1bbe13

2
21b exp 11

2
s32 −

bb

2
e32

2+a exp 11
2

s12 −
ba

2
e12

226 .
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Here

d.W=e13J (W)
13

=
2
Z
5abce13 sinh 1bae13

2
+

bb − ba

2
e23
2

+bce13 sinh 1bbe13

2
21b exp

1
2
1 s32 −

bb

2
e32
2+a exp

1
2
1s12 −

ba

2
e12
226 .

If we want d.W < 0, so that the system is an engine, we need the first
term of this expression to be negative so that certainly (bb − ba) e23 < 0.

The conclusion of the analysis of the three state system is that depending
on the topology of the transitions in connection with the distribution of tem-
peratures among these transitions, the system can act as a motor, a refriger-
ator or can transform work into heat.

Example 5. Two spins at different temperatures.

This system is a four-state system. The system is formed of two spins
s1, s2 each spin si={ − 1, +1} with Hamiltonian

H(s1, s2)=H1(s1)+H2(s2)+H12(s1, s2)

Hi(si)=E 11+si

2
2 (E > 0)

H12(s1, s2)= −
Js1s2

2
(J > 0).

The entropy s(s1, s2)=0. Each spin si is coupled to a thermal reser-
voir Wi at temperature b−1

i . Moreover s1 is coupled to a work reservoir.
The entropy of the reservoir Wi is si(ei)=biei where ei is the energy of Wi

and the entropy of the work reservoir is 0. We have transitions with the
reservoirs:

R (1)
(−s1, s2 )(s1, s2 )=a1 exp 5−

b1

2
(H(−s1, s2) − H(s1, s2))6

R (2)
(s1, −s2 )(s1, s2 )=a2 exp 5−

b2

2
(H(s1, −s2) − H(s1, s2))6

R (W)
(−s1, s2 )(s1, s2 )=b.
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Moreover we have an external transition where the two spins exchange
their values, which keeps constant the energy content

R(s2, s1 )(s1, s2 )=c for s1 ] s2.

Here

H(−s1, s2) − H(s1, s2)= − Es1+Js1s2

H(s1, −s2) − H(s1, s2)= − Es12+Js1s2.

We can consider now the total amount of work per unit time step. The
transitions which produce work are (−+) \ (++), (− − ) \ (+− ), and
during the transition (−+) Q (++) the energy of the system varies by
E − J and during the transition (− − ) Q (+− ) it varies by E+J. The
amount of work is

d.W=(E − J) J (W)
(++), (−+)+(E+J) J (W)

(+− ), (− − ).

It is proved in Appendix A, that d.W < 0 so that in any circumstance, the
system provides work to the reservoir of work W..

Remark. This behavior is to be contrasted with the behavior of the
three-state system studied in Example 4, 2nd situation.

Example 6. External transitions involving several reservoirs.

In Section 9, we considered the case where each external transition has
a given type a, namely each external transition couples the system with only
one reservoir. This hypothesis is realistic (and indeed realized) in most
physico-chemical or biochemical systems, because various reactions occur
independently. On the other hand, economical or ecological systems will
not, in general obey such a rule. For example, an economic transaction
between a system and its environnment, involves an exchange of goods and
money which may go to two different ‘‘reservoirs,’’ and the two parts of
the transactions cannot be dissociated. If they are dissociated for example
when one pays in advance, the system must have memory—which indeed it
has. But then, the stochastic matrix formalism does not express memory
effects.

11. CONCLUSION

In this article, we have specialized the general master equation for-
mulation of the dynamics of a system in order to be able to treat reservoirs
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explicitly. As observed from the outside, a system which is in a non-equi-
librium stationary state exchanges resources with certain reservoirs which
may have zero entropy and the overall dynamics can be reduced, again
from an external point of view, to the currents of various resources in or
out the system. We have defined and calculated various dissipations of
these resources and given lower bounds for these dissipations in term of
state functions. Moreover, a number of simple examples show that the
topology of the transitions with the reservoirs may be important in order to
extract usable resources, like work.

APPENDIX A. CALCULATIONS FOR THE TWO-SPIN SYSTEM

The four states and their transitions are arranged as

++Ł
˜

1, or W
− +

2
‡… …‡

2

+ −Ł
˜

1, or W
− −

For ++, the spanning trees of root ++ are

EG• EF• GH• FH•

For −+, the spanning trees of root −+ are

EG• EF• GH• FH•

ps(+, +)=(R (1)
(++), (−+)+R(W)

(++), (−+)) R (2)
(++), (+−)(R (1)

(+− ), (− − )+R (W)
(+− ), (− − ))

+R (2)
(++), (+− )(R (1)

(++), (−+)+R(W)
(++), (−+))(R(2)

(−+), (− − ))

+R (2)
(++), (+− )(R (1)

(+− ), (− − )+R(W)
(+− ), (− − )) R (2)

(− − ), (−+)

+(R(1)
(++), (−+)+R(W)

(++), (−+)) R (2)
(−+), (− − )(R (1)

(− − ), (+− )+R (W)
(− − ), (+− )).

We need

H(++) − H(−+)=E − J

H(++) − H(+− )=E − J

H(+− ) − H(− − )=E+J

H(−+) − H(− − )=E+J
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ps(++)=1a1 exp 1 −
b1

2
(E − J)2+b2

× a2 exp 1 −
b2

2
(E − J)21a1 exp 1 −

b1

2
(E+J)2+b2

+a2 exp 1 −
b2

2
(E − J)21a1 exp 1 −

b1

2
(E − J)2+b2

× a2 exp 1 −
b2

2
(E+J)2

+a2 exp 1 −
b2

2
(E − J)21a1 exp 1 −

b1

2
(E+J)2+b2

× a2 exp 1+
b2

2
(E+J)2

+1a1 exp 1 −
b1

2
(E − J)2+b2

× a2 exp 1 −
b2

2
(E+J)21a1 exp 1b1

2
(E+J)2+b2

ps(−+)=1a1 exp 1+
b1

2
(E − J)2+b2

× a2 exp 1 −
b2

2
(E − J)21a1 exp 1 −

b1

2
(E+J)2+b2

+a2 exp 1 −
b2

2
(E+J)21a1 exp 1b1

2
(E+J)2+b2

× a2 exp 1b2

2
(E − J)2

+a2 exp 1 −
b2

2
(E+J)21a1 exp 1b1

2
(E − J)2+b2

× a2 exp 1 −
b2

2
(E − J)2

+a2 exp 1 −
b2

2
(E+J)21a1 exp 1b1

2
(E+J)2+b2

×1a1 exp 1+
b1

2
(E − J)2+b2 .
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For + − , the spanning trees are

EF• FH• EG• GH•

ps(+− )=a2 exp 1b2

2
(E − J)21a1 exp 1 −

b1

2
(E − J)2+b2

×1a2 exp 1 −
b2

2
(E+J)22

+1a1 exp 1 −
b1

2
(E+J)2+b2 a2 exp 1b2

2
(E+J)2

×1a1 exp 1b1

2
(E − J)2+b2

+1a1 exp 1 −
b1

2
(E+J)2+b2 a2 exp 1b2

2
(E − J)2

×1a1 exp 1 −
b1

2
(E − J)2+b2

+a2 exp 1b2

2
(E − J)21a1 exp 1 −

b1

2
(E+J)2+b2

× a2 exp 1b2

2
(E+J)2 .

For − − , the spanning trees are

EF• EG• FH• GH•

and finally

ps(− − )=a2 exp 1b2

2
(E+J)21a1 exp 1+

b1

2
(E − J)2+b2

× a2 exp 1 −
b2

2
(E − J)2

+1a1 exp 1b1

2
(E+J)2+b2 a2 exp 1b2

2
(E − J)2

×1a1 exp 1 −
b1

2
(E − J)2+b2
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+1a1 exp 1b1

2
(E+J)2+b2 a2 exp 1b2

2
(E+J)2

×1a1 exp 1b1

2
(E − J)2+b2

+a2 exp 1b2

2
(E+J)21a1 exp 1b1

2
(E+J)2+b2

× a2 exp 1b2

2
(E − J)2 .

We have not written the normalization factor 1
Z . The total current along the

full cycle is

J (2)
(++), (+− )=

1
Z

[R(2)
(++), (+− )(R(1)

(+− ), (− − )+R(W)
(+− ), (− − ))

× (R(2)
(− − ), (−+))(R(1)

(−+), (++)+R (W)
(−+), (++))-reverse]

J (2)
(++), (+− )=

1
Z
5a2 exp 1 −

b2

2
(E − J)21a1 exp 1 −

b1

2
(E+J)2+b2

× a2 exp 1b2

2
(E+J)21a1 exp 1b1

2
(E − J)2+b2

− a2 exp 1b2

2
(E − J)21a1 exp 1b1

2
(E+J)2+b2

× a2 exp 1 −
b2

2
(E+J)21a1 exp 1 −

b1

2
(E − J)2+b26 .

After regrouping, we obtain

J (2)
(++), (+− )=

2a2
2

Z
5a2

1 sinh(b2 − b1) J+a1b 1 sinh 1b2J −
b1

2
(E+J)2

+1 sinh 1b2J+
b1

2
(E − J)22+b2 sinh b2J6 .

Then we get for the work transitions

J (W)
(++), (−+)=−

2b
Z
5a2

1 sinh
b1(E − J)

2
1a2

2e−b2 E+2a1a2e −
b2E

2 ch 1b1(E+J) − b2J
2

2

+2a2be −
b2E

2 ch
b2J

2
2+a2

2b sinh b2J+a2
2a1 sinh 1b1(E+J)

2
− b2J26 .
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and the variation of energy is H(++) − H(−+)=E − J. In the same way

J (W)
(+− ), (− − )= −

2b
Z
5a1 sinh

b1

2
(E+J)1a2

2eb2 E+2a2be
b2E

2 ch
b2J

2

+2a1a2e
b2E

2 ch 1b2J
2

+
b1

2
(E − J)22

+a2
2b sinh(b2J)+a2

2a1 sinh 1b2J+
b1

2
(E − J)26

and the variation of energy is H(+− ) − H(− − )=E+J. The variation of
the work is then:

d.W=(E − J) J (W)
(++), (−+)+(E+J) J (W)

(+− ), (− − )

or expanding

d.W=−
2b
Z
5a1(E − J) sinh

b1(E − J)
2

1a2
2e− b2 E

+2a1a2e−
b2E

2 ch 1b1(E+J) − b2J
2

2+2a2be−
b2E

2 ch 1b2J
2
22

+a1(E+J) sinh
b1(E+J)

2
1a2

2eb2 E+2a1a2e
b2E

2 ch 1b1(E − J)+b2J
2

2

+2a2be
b2E

2 ch 1b2J
2
22+2a2

2bE sinh(b2J)

+a2
2a1

1 (E − J) sinh 1b1(E+J)
2

− b2J2

+(E+J) sinh 1b1(E − J)
2

+b2J226 . (A1)

We shall show that the square bracket in this last expression (A.1) is
positive. Here E, J, a1, a2, b are positive. The only possibly negative terms
are the last terms in a2

2a1 which become after reduction

2a2
2a1

5E sinh
b1E

2
ch 1b1J

2
− b2J2− J sinh 1b1J

2
− b2J2 ch

b1E
2
6 . (A2)
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The only possibility for the terms (A.2) to be negative is that b1/2 > b2 and
moreover that J > E because if (A.2) is negative, we must have

J th 1b1J
2

− b2J2 > E th 1b1E
2

2 .

Now let us collect together in the bracket of (A.1) the various terms
in a2

2a1. We see that

(J − E) sinh 1b1
(J − E)

2
2 e−b2 E+(E+J) sinh 1b1

1 (E+J)
2

22 eb2 E

is of the type ue−b2E+veb2 E with 0 < u < v and is always larger than u+v
for E > 0. So the sum of the terms in the bracket of (A.1) which contain
a2

2a1 is larger than

(J − E) sinh 1b1
1 (J − E)

2
22+(J+E) sinh 1b1

1 (E+J)
2

22

+2E sinh 1b1E
2

2 ch 1b1J
2

− b2J2− 2J sinh 1b1J
2

− b2J2 ch 1b1E
2

2

and obviously this is

\ 2J sinh
b1J

2
ch 1b1E

2
2− 2J sinh 1b1J

2
− b2J2 ch 1b1E

2
2

> 0.

As a consequence d.W < 0, and thus, this system always produces work on
the reservoir W..
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